
GNU Parallel Tutorial

Page 1

GNU Parallel Tutorial
This tutorial shows off much of GNU parallel's functionality. The
 tutorial is meant to learn the options
in GNU parallel. The tutorial
 is not to show realistic examples from the real world.

Spend an hour walking through the tutorial. Your command line will
 love you for it.

Prerequisites
To run this tutorial you must have the following:

parallel >= version 20140622

Install the newest version with:

 (wget -O - pi.dk/3 || curl pi.dk/3/ || fetch -o -
http://pi.dk/3) | bash

This will also install the newest version of the tutorial:

 man parallel_tutorial

Most of the tutorial will work on older versions, too.

abc-file:

The file can be generated by:

 parallel -k echo ::: A B C > abc-file

def-file:

The file can be generated by:

 parallel -k echo ::: D E F > def-file

abc0-file:

The file can be generated by:

 perl -e 'printf "A\0B\0C\0"' > abc0-file

abc_-file:

The file can be generated by:

 perl -e 'printf "A_B_C_"' > abc_-file

tsv-file.tsv

The file can be generated by:

 perl -e 'printf "f1\tf2\nA\tB\nC\tD\n"' > tsv-file.tsv

num8

The file can be generated by:

 perl -e 'for(1..8){print "$_\n"}' > num8

num128

The file can be generated by:

 perl -e 'for(1..128){print "$_\n"}' > num128

num30000

The file can be generated by:

GNU Parallel Tutorial

Page 2

 perl -e 'for(1..30000){print "$_\n"}' > num30000

num1000000

The file can be generated by:

 perl -e 'for(1..1000000){print "$_\n"}' > num1000000

num_%header

The file can be generated by:

 (echo %head1; echo %head2; perl -e 'for(1..10){print
"$_\n"}') > num_%header

For remote running: ssh login on 2 servers with no password in
 $SERVER1 and $SERVER2

 SERVER1=server.example.com
 SERVER2=server2.example.net

You must be able to:

 ssh $SERVER1 echo works
 ssh $SERVER2 echo works

It can be setup by running 'ssh-keygen -t dsa; ssh-copy-id $SERVER1'
 and using an
empty pass phrase.

Input sources
GNU parallel reads input from input sources. These can be files, the
 command line, and stdin
(standard input or a pipe).

A single input source
Input can be read from the command line:

 parallel echo ::: A B C

Output (the order may be different because the jobs are run in
 parallel):

 A
 B
 C

The input source can be a file:

 parallel -a abc-file echo

Output: Same as above.

STDIN (standard input) can be the input source:

 cat abc-file | parallel echo

Output: Same as above.

Multiple input sources
GNU parallel can take multiple input sources given on the command
 line. GNU parallel then
generates all combinations of the input
 sources:

 parallel echo ::: A B C ::: D E F

GNU Parallel Tutorial

Page 3

Output (the order may be different):

 A D
 A E
 A F
 B D
 B E
 B F
 C D
 C E
 C F

The input sources can be files:

 parallel -a abc-file -a def-file echo

Output: Same as above.

STDIN (standard input) can be one of the input sources using -:

 cat abc-file | parallel -a - -a def-file echo

Output: Same as above.

Instead of -a files can be given after :::::

 cat abc-file | parallel echo :::: - def-file

Output: Same as above.

::: and :::: can be mixed:

 parallel echo ::: A B C :::: def-file

Output: Same as above.

Matching arguments from all input sources

With --xapply you can get one argument from each input source:

 parallel --xapply echo ::: A B C ::: D E F

Output (the order may be different):

 A D
 B E
 C F

If one of the input sources is too short, its values will wrap:

 parallel --xapply echo ::: A B C D E ::: F G

Output (the order may be different):

 A F
 B G
 C F
 D G
 E F

GNU Parallel Tutorial

Page 4

Changing the argument separator.
GNU parallel can use other separators than ::: or ::::. This is
 typically useful if ::: or :::: is used in the
command to run:

 parallel --arg-sep ,, echo ,, A B C :::: def-file

Output (the order may be different):

 A D
 A E
 A F
 B D
 B E
 B F
 C D
 C E
 C F

Changing the argument file separator:

 parallel --arg-file-sep // echo ::: A B C // def-file

Output: Same as above.

Changing the argument delimiter
GNU parallel will normally treat a full line as a single argument: It
 uses \n as argument delimiter. This
can be changed with -d:

 parallel -d _ echo :::: abc_-file

Output (the order may be different):

 A
 B
 C

NULL can be given as \0:

 parallel -d '\0' echo :::: abc0-file

Output: Same as above.

A shorthand for -d '\0' is -0 (this will often be used to read files
 from find ... -print0):

 parallel -0 echo :::: abc0-file

Output: Same as above.

End-of-file value for input source
GNU parallel can stop reading when it encounters a certain value:

 parallel -E stop echo ::: A B stop C D

Output:

 A
 B

GNU Parallel Tutorial

Page 5

Skipping empty lines
Using --no-run-if-empty GNU parallel will skip empty lines.

 (echo 1; echo; echo 2) | parallel --no-run-if-empty echo

Output:

 1
 2

Building the command line
No command means arguments are commands

If no command is given after parallel the arguments themselves are
 treated as commands:

 parallel ::: ls 'echo foo' pwd

Output (the order may be different):

 [list of files in current dir]
 foo
 [/path/to/current/working/dir]

The command can be a script, a binary or a Bash function if the function is
 exported using export -f:

 # Only works in Bash
 my_func() {
 echo in my_func $1
 }
 export -f my_func
 parallel my_func ::: 1 2 3

Output (the order may be different):

 in my_func 1
 in my_func 2
 in my_func 3

Replacement strings
The 7 predefined replacement strings

GNU parallel has several replacement strings. If no replacement
 strings are used the default is to
append {}:

 parallel echo ::: A/B.C

Output:

 A/B.C

The default replacement string is {}:

 parallel echo {} ::: A/B.C

Output:

 A/B.C

GNU Parallel Tutorial

Page 6

The replacement string {.} removes the extension:

 parallel echo {.} ::: A/B.C

Output:

 A/B

The replacement string {/} removes the path:

 parallel echo {/} ::: A/B.C

Output:

 B.C

The replacement string {//} keeps only the path:

 parallel echo {//} ::: A/B.C

Output:

 A

The replacement string {/.} removes the path and the extension:

 parallel echo {/.} ::: A/B.C

Output:

 B

The replacement string {#} gives the job number:

 parallel echo {#} ::: A B C

Output (the order may be different):

 1
 2
 3

The replacement string {%} gives the job slot number (between 1 and
 number of jobs to run in
parallel):

 parallel -j 2 echo {%} ::: A B C

Output (the order may be different and 1 and 2 may be swapped):

 1
 2
 1

Changing the replacement strings

The replacement string {} can be changed with -I:

 parallel -I ,, echo ,, ::: A/B.C

GNU Parallel Tutorial

Page 7

Output:

 A/B.C

The replacement string {.} can be changed with --extensionreplace:

 parallel --extensionreplace ,, echo ,, ::: A/B.C

Output:

 A/B

The replacement string {/} can be replaced with --basenamereplace:

 parallel --basenamereplace ,, echo ,, ::: A/B.C

Output:

 B.C

The replacement string {//} can be changed with --dirnamereplace:

 parallel --dirnamereplace ,, echo ,, ::: A/B.C

Output:

 A

The replacement string {/.} can be changed with --basenameextensionreplace:

 parallel --basenameextensionreplace ,, echo ,, ::: A/B.C

Output:

 B

The replacement string {#} can be changed with --seqreplace:

 parallel --seqreplace ,, echo ,, ::: A B C

Output (the order may be different):

 1
 2
 3

The replacement string {%} can be changed with --slotreplace:

 parallel -j2 --slotreplace ,, echo ,, ::: A B C

Output (the order may be different and 1 and 2 may be swapped):

 1
 2
 1

GNU Parallel Tutorial

Page 8

Perl expression replacement string

When predefined replacement strings are not flexible enough a perl
 expression can be used instead.
One example is to remove two
 extensions: foo.tar.gz becomes foo

 parallel echo '{= s:\.[^.]+$::;s:\.[^.]+$::; =}' ::: foo.tar.gz

Output:

 foo

In {= =} you can access all of GNU parallel's internal functions
 and variables. A few are worth
mentioning.

total_jobs() returns the total number of jobs:

 parallel echo Job {#} of {= '$_=total_jobs()' =} ::: {1..5}

Output:

 Job 1 of 5
 Job 2 of 5
 Job 3 of 5
 Job 4 of 5
 Job 5 of 5

Q(...) shell quotes the string:

 parallel echo {} shell quoted is {= '$_=Q($_)' =} ::: '*/!#$'

Output:

 */!#$ shell quoted is */\!\#\$

$job->skip() skips the job:

 parallel echo {= 'if($_==3) { $job->skip() }' =} ::: {1..5}

Output:

 1
 2
 4
 5

@arg contains the input source variables:

 parallel echo {= 'if($arg[1]==$arg[2]) { $job->skip() }' =} ::: {1..3}
::: {1..3}

Output:

 1 2
 1 3
 2 1
 2 3
 3 1
 3 2

GNU Parallel Tutorial

Page 9

If the strings {= and =} cause problems they can be replaced with --parens:

 parallel --parens ,,,, echo ',, s:\.[^.]+$::;s:\.[^.]+$::; ,,' :::
foo.tar.gz

Output: Same as above.

To define a shorthand replacement string use --rpl:

 parallel --rpl '.. s:\.[^.]+$::;s:\.[^.]+$::;' echo '..' ::: foo.tar.gz

Output: Same as above.

If the shorthand starts with { it can be used as a positional
 replacement string, too:

 parallel --rpl '{..} s:\.[^.]+$::;s:\.[^.]+$::;' echo '{..}' :::
foo.tar.gz

Output: Same as above.

GNU parallel's 7 replacement strings are implemented as this:

 --rpl '{} '
 --rpl '{#} $_=$job->seq()'
 --rpl '{%} $_=$job->slot()'
 --rpl '{/} s:.*/::'
 --rpl '{//} $Global::use{"File::Basename"} ||= eval "use File::Basename;
1;"; $_ = dirname($_);'
 --rpl '{/.} s:.*/::; s:\.[^/.]+$::;'
 --rpl '{.} s:\.[^/.]+$::'

Positional replacement strings

With multiple input sources the argument from the individual input
 sources can be accessed with {
number}:

 parallel echo {1} and {2} ::: A B ::: C D

Output (the order may be different):

 A and C
 A and D
 B and C
 B and D

The positional replacement strings can also be modified using /, //, /., and .:

 parallel echo /={1/} //={1//} /.={1/.} .={1.} ::: A/B.C D/E.F

Output (the order may be different):

 /=B.C //=A /.=B .=A/B
 /=E.F //=D /.=E .=D/E

If a position is negative, it will refer to the input source counted
 from behind:

 parallel echo 1={1} 2={2} 3={3} -1={-1} -2={-2} -3={-3} ::: A B ::: C D
::: E F

GNU Parallel Tutorial

Page 10

Output (the order may be different):

 1=A 2=C 3=E -1=E -2=C -3=A
 1=A 2=C 3=F -1=F -2=C -3=A
 1=A 2=D 3=E -1=E -2=D -3=A
 1=A 2=D 3=F -1=F -2=D -3=A
 1=B 2=C 3=E -1=E -2=C -3=B
 1=B 2=C 3=F -1=F -2=C -3=B
 1=B 2=D 3=E -1=E -2=D -3=B
 1=B 2=D 3=F -1=F -2=D -3=B

Positional perl expression replacement string

To use a perl expression as a positional replacement string simply
 prepend the perl expression with
number and space:

 parallel echo '{=2 s:\.[^.]+$::;s:\.[^.]+$::; =} {1}' ::: bar :::
foo.tar.gz

Output:

 foo bar

If shorthand defined using --rpl starts with { it can be used as
 a positional replacement string, too:

 parallel --rpl '{..} s:\.[^.]+$::;s:\.[^.]+$::;' echo '{2..} {1}' ::: bar
 ::: foo.tar.gz

Output: Same as above.

Input from columns

The columns in a file can be bound to positional replacement strings
 using --colsep. Here the
columns are separated by TAB (\t):

 parallel --colsep '\t' echo 1={1} 2={2} :::: tsv-file.tsv

Output (the order may be different):

 1=f1 2=f2
 1=A 2=B
 1=C 2=D

Header defined replacement strings

With --header GNU parallel will use the first value of the input
 source as the name of the
replacement string. Only the non-modified
 version {} is supported:

 parallel --header : echo f1={f1} f2={f2} ::: f1 A B ::: f2 C D

Output (the order may be different):

 f1=A f2=C
 f1=A f2=D
 f1=B f2=C
 f1=B f2=D

It is useful with --colsep for processing files with TAB separated values:

 parallel --header : --colsep '\t' echo f1={f1} f2={f2} :::: tsv-file.tsv

GNU Parallel Tutorial

Page 11

Output (the order may be different):

 f1=A f2=B
 f1=C f2=D

More pre-defined replacement strings

--plus adds the replacement strings {+/} {+.} {+..} {+...} {..} {...}
 {/..} {/...} {##}. The idea being that
{+foo} matches the opposite of {foo}
 and {} = {+/}/{/} = {.}.{+.} = {+/}/{/.}.{+.} = {..}.{+..} = {+/}/{/..}.
{+..} = {...}.{+...} = {+/}/{/...}.{+...}.

 parallel --plus echo {} ::: dir/sub/file.ext1.ext2.ext3
 parallel --plus echo {+/}/{/} ::: dir/sub/file.ext1.ext2.ext3
 parallel --plus echo {.}.{+.} ::: dir/sub/file.ext1.ext2.ext3
 parallel --plus echo {+/}/{/.}.{+.} ::: dir/sub/file.ext1.ext2.ext3
 parallel --plus echo {..}.{+..} ::: dir/sub/file.ext1.ext2.ext3
 parallel --plus echo {+/}/{/..}.{+..} ::: dir/sub/file.ext1.ext2.ext3
 parallel --plus echo {...}.{+...} ::: dir/sub/file.ext1.ext2.ext3
 parallel --plus echo {+/}/{/...}.{+...} ::: dir/sub/file.ext1.ext2.ext3

Output:

 dir/sub/file.ext1.ext2.ext3

{##} is simply the number of jobs:

 parallel --plus echo Job {#} of {##} ::: {1..5}

Output:

 Job 1 of 5
 Job 2 of 5
 Job 3 of 5
 Job 4 of 5
 Job 5 of 5

More than one argument
With --xargs GNU parallel will fit as many arguments as possible on a
 single line:

 cat num30000 | parallel --xargs echo | wc -l

Output (if you run this under Bash on GNU/Linux):

 2

The 30000 arguments fitted on 2 lines.

The maximal length of a single line can be set with -s. With a maximal
 line length of 10000 chars 17
commands will be run:

 cat num30000 | parallel --xargs -s 10000 echo | wc -l

Output:

 17

For better parallelism GNU parallel can distribute the arguments
 between all the parallel jobs when
end of file is met.

GNU Parallel Tutorial

Page 12

Below GNU parallel reads the last argument when generating the second
 job. When GNU parallel
reads the last argument, it spreads all the
 arguments for the second job over 4 jobs instead, as 4
parallel jobs
 are requested.

The first job will be the same as the --xargs example above, but the
 second job will be split into 4
evenly sized jobs, resulting in a
 total of 5 jobs:

 cat num30000 | parallel --jobs 4 -m echo | wc -l

Output (if you run this under Bash on GNU/Linux):

 5

This is even more visible when running 4 jobs with 10 arguments. The
 10 arguments are being spread
over 4 jobs:

 parallel --jobs 4 -m echo ::: 1 2 3 4 5 6 7 8 9 10

Output:

 1 2 3
 4 5 6
 7 8 9
 10

A replacement string can be part of a word. -m will not repeat the context:

 parallel --jobs 4 -m echo pre-{}-post ::: A B C D E F G

Output (the order may be different):

 pre-A B-post
 pre-C D-post
 pre-E F-post
 pre-G-post

To repeat the context use -X which otherwise works like -m:

 parallel --jobs 4 -X echo pre-{}-post ::: A B C D E F G

Output (the order may be different):

 pre-A-post pre-B-post
 pre-C-post pre-D-post
 pre-E-post pre-F-post
 pre-G-post

To limit the number of arguments use -N:

 parallel -N3 echo ::: A B C D E F G H

Output (the order may be different):

 A B C
 D E F
 G H

GNU Parallel Tutorial

Page 13

-N also sets the positional replacement strings:

 parallel -N3 echo 1={1} 2={2} 3={3} ::: A B C D E F G H

Output (the order may be different):

 1=A 2=B 3=C
 1=D 2=E 3=F
 1=G 2=H 3=

-N0 reads 1 argument but inserts none:

 parallel -N0 echo foo ::: 1 2 3

Output:

 foo
 foo
 foo

Quoting
Command lines that contain special characters may need to be protected from the shell.

The perl program print "@ARGV\n" basically works like echo.

 perl -e 'print "@ARGV\n"' A

Output:

 A

To run that in parallel the command needs to be quoted:

 parallel perl -e 'print "@ARGV\n"' ::: This wont work

Output:

 [Nothing]

To quote the command use -q:

 parallel -q perl -e 'print "@ARGV\n"' ::: This works

Output (the order may be different):

 This
 works

Or you can quote the critical part using \':

 parallel perl -e \''print "@ARGV\n"'\' ::: This works, too

Output (the order may be different):

 This
 works,
 too

GNU Parallel Tutorial

Page 14

GNU parallel can also \-quote full lines. Simply run this:

 parallel --shellquote
 parallel: Warning: Input is read from the terminal. Only experts do this
on purpose. Press CTRL-D to exit.
 perl -e 'print "@ARGV\n"'
 [CTRL-D]

Output:

 perl\ -e\ \'print\ \"@ARGV\\n\"\'

This can then be used as the command:

 parallel perl\ -e\ \'print\ \"@ARGV\\n\"\' ::: This also works

Output (the order may be different):

 This
 also
 works

Trimming space
Space can be trimmed on the arguments using --trim:

 parallel --trim r echo pre-{}-post ::: ' A '

Output:

 pre- A-post

To trim on the left side:

 parallel --trim l echo pre-{}-post ::: ' A '

Output:

 pre-A -post

To trim on the both sides:

 parallel --trim lr echo pre-{}-post ::: ' A '

Output:

 pre-A-post

Controlling the output
The output can prefixed with the argument:

 parallel --tag echo foo-{} ::: A B C

Output (the order may be different):

 A foo-A
 B foo-B
 C foo-C

GNU Parallel Tutorial

Page 15

To prefix it with another string use --tagstring:

 parallel --tagstring {}-bar echo foo-{} ::: A B C

Output (the order may be different):

 A-bar foo-A
 B-bar foo-B
 C-bar foo-C

To see what commands will be run without running them use --dryrun:

 parallel --dryrun echo {} ::: A B C

Output (the order may be different):

 echo A
 echo B
 echo C

To print the command before running them use --verbose:

 parallel --verbose echo {} ::: A B C

Output (the order may be different):

 echo A
 echo B
 A
 echo C
 B
 C

GNU parallel will postpone the output until the command completes:

 parallel -j2 'printf "%s-start\n%s" {} {};sleep {};printf "%s\n"
-middle;echo {}-end' ::: 4 2 1

Output:

 2-start
 2-middle
 2-end
 1-start
 1-middle
 1-end
 4-start
 4-middle
 4-end

To get the output immediately use --ungroup:

 parallel -j2 --ungroup 'printf "%s-start\n%s" {} {};sleep {};printf
"%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

GNU Parallel Tutorial

Page 16

 4-start
 42-start
 2-middle
 2-end
 1-start
 1-middle
 1-end
 -middle
 4-end

--ungroup is fast, but can cause half a line from one job to be mixed
 with half a line of another job.
That has happend in the second line,
 where the line '4-middle' is mixed with '2-start'.

To avoid this use --linebuffer:

 parallel -j2 --linebuffer 'printf "%s-start\n%s" {} {};sleep {};printf
"%s\n" -middle;echo {}-end' ::: 4 2 1

Output:

 4-start
 2-start
 2-middle
 2-end
 1-start
 1-middle
 1-end
 4-middle
 4-end

To force the output in the same order as the arguments use --keep-order/-k:

 parallel -j2 -k 'printf "%s-start\n%s" {} {};sleep {};printf "%s\n"
-middle;echo {}-end' ::: 4 2 1

Output:

 4-start
 4-middle
 4-end
 2-start
 2-middle
 2-end
 1-start
 1-middle
 1-end

Saving output into files
GNU parallel can save the output of each job into files:

 parallel --files echo ::: A B C

Output will be similar to this:

 /tmp/pAh6uWuQCg.par
 /tmp/opjhZCzAX4.par
 /tmp/W0AT_Rph2o.par

GNU Parallel Tutorial

Page 17

By default GNU parallel will cache the output in files in /tmp. This
 can be changed by setting
$TMPDIR or --tmpdir:

 parallel --tmpdir /var/tmp --files echo ::: A B C

Output will be similar to this:

 /var/tmp/N_vk7phQRc.par
 /var/tmp/7zA4Ccf3wZ.par
 /var/tmp/LIuKgF_2LP.par

Or:

 TMPDIR=/var/tmp parallel --files echo ::: A B C

Output: Same as above.

The output files can be saved in a structured way using --results:

 parallel --results outdir echo ::: A B C

Output:

 A
 B
 C

These files were also generated containing the standard output
 (stdout), standard error (stderr), and
the sequence number (seq):

 outdir/1/A/seq
 outdir/1/A/stderr
 outdir/1/A/stdout
 outdir/1/B/seq
 outdir/1/B/stderr
 outdir/1/B/stdout
 outdir/1/C/seq
 outdir/1/C/stderr
 outdir/1/C/stdout

--header : will take the first value as name and use that in the
 directory structure. This is useful if you
are using multiple input
 sources:

 parallel --header : --results outdir echo ::: f1 A B ::: f2 C D

Generated files:

 outdir/f1/A/f2/C/seq
 outdir/f1/A/f2/C/stderr
 outdir/f1/A/f2/C/stdout
 outdir/f1/A/f2/D/seq
 outdir/f1/A/f2/D/stderr
 outdir/f1/A/f2/D/stdout
 outdir/f1/B/f2/C/seq
 outdir/f1/B/f2/C/stderr
 outdir/f1/B/f2/C/stdout
 outdir/f1/B/f2/D/seq
 outdir/f1/B/f2/D/stderr

GNU Parallel Tutorial

Page 18

 outdir/f1/B/f2/D/stdout

The directories are named after the variables and their values.

Controlling the execution
Number of simultaneous jobs

The number of concurrent jobs is given with --jobs/-j:

 /usr/bin/time parallel -N0 -j64 sleep 1 :::: num128

With 64 jobs in parallel the 128 sleeps will take 2-8 seconds to run -
 depending on how fast your
machine is.

By default --jobs is the same as the number of CPU cores. So this:

 /usr/bin/time parallel -N0 sleep 1 :::: num128

should take twice the time of running 2 jobs per CPU core:

 /usr/bin/time parallel -N0 --jobs 200% sleep 1 :::: num128

--jobs 0 will run as many jobs in parallel as possible:

 /usr/bin/time parallel -N0 --jobs 0 sleep 1 :::: num128

which should take 1-7 seconds depending on how fast your machine is.

--jobs can read from a file which is re-read when a job finishes:

 echo 50% > my_jobs
 /usr/bin/time parallel -N0 --jobs my_jobs sleep 1 :::: num128 &
 sleep 1
 echo 0 > my_jobs
 wait

The first second only 50% of the CPU cores will run a job. Then 0 is
 put into my_jobs and then the
rest of the jobs will be started in
 parallel.

Instead of basing the percentage on the number of CPU cores GNU parallel can base it on the
number of CPUs:

 parallel --use-cpus-instead-of-cores -N0 sleep 1 :::: num8

Shuffle job order
If you have many jobs (e.g. by multiple combinations of input
 sources), it can be handy to shuffle the
jobs, so you get different
 values run. Use --shuf for that:

 parallel --shuf echo ::: 1 2 3 ::: a b c ::: A B C

Output:

 All combinations but different order for each run.

Interactivity
GNU parallel can ask the user if a command should be run using --interactive:

 parallel --interactive echo ::: 1 2 3

GNU Parallel Tutorial

Page 19

Output:

 echo 1 ?...y
 echo 2 ?...n
 1
 echo 3 ?...y
 3

GNU parallel can be used to put arguments on the command line for an
 interactive command such
as emacs to edit one file at a time:

 parallel --tty emacs ::: 1 2 3

Or give multiple argument in one go to open multiple files:

 parallel -X --tty vi ::: 1 2 3

A terminal for every job
Using --tmux GNU parallel can start a terminal for every job run:

 seq 10 20 | parallel --tmux 'echo start {}; sleep {}; echo done {}'

This will tell you to run something similar to:

 tmux -S /tmp/tmsrPrO0 attach

Using normal tmux keystrokes (CTRL-b n or CTRL-b p) you can cycle
 between windows of the
running jobs. When a job is finished it will
 pause for 10 seconds before closing the window.

Timing
Some jobs do heavy I/O when they start. To avoid a thundering herd GNU parallel can delay starting
new jobs. --delay X will make
 sure there is at least X seconds between each start:

 parallel --delay 2.5 echo Starting {}\;date ::: 1 2 3

Output:

 Starting 1
 Thu Aug 15 16:24:33 CEST 2013
 Starting 2
 Thu Aug 15 16:24:35 CEST 2013
 Starting 3
 Thu Aug 15 16:24:38 CEST 2013

If jobs taking more than a certain amount of time are known to fail,
 they can be stopped with
--timeout. The accuracy of --timeout is
 2 seconds:

 parallel --timeout 4.1 sleep {}\; echo {} ::: 2 4 6 8

Output:

 2
 4

GNU parallel can compute the median runtime for jobs and kill those
 that take more than 200% of the
median runtime:

GNU Parallel Tutorial

Page 20

 parallel --timeout 200% sleep {}\; echo {} ::: 2.1 2.2 3 7 2.3

Output:

 2.1
 2.2
 3
 2.3

Progress information
Based on the runtime of completed jobs GNU parallel can estimate the
 total runtime:

 parallel --eta sleep ::: 1 3 2 2 1 3 3 2 1

Output:

 Computers / CPU cores / Max jobs to run
 1:local / 2 / 2

 Computer:jobs running/jobs completed/%of started jobs/Average seconds to
complete
 ETA: 2s 0left 1.11avg local:0/9/100%/1.1s

GNU parallel can give progress information with --progress:

 parallel --progress sleep ::: 1 3 2 2 1 3 3 2 1

Output:

 Computers / CPU cores / Max jobs to run
 1:local / 2 / 2

 Computer:jobs running/jobs completed/%of started jobs/Average seconds to
complete
 local:0/9/100%/1.1s

A progress bar can be shown with --bar:

 parallel --bar sleep ::: 1 3 2 2 1 3 3 2 1

And a graphic bar can be shown with --bar and zenity:

 seq 1000 | parallel -j10 --bar '(echo -n {};sleep 0.1)' 2> >(zenity
--progress --auto-kill)

A logfile of the jobs completed so far can be generated with --joblog:

 parallel --joblog /tmp/log exit ::: 1 2 3 0
 cat /tmp/log

Output:

 Seq Host Starttime Runtime Send Receive Exitval Signal
Command
 1 : 1376577364.974 0.008 0 0 1 0
exit 1

GNU Parallel Tutorial

Page 21

 2 : 1376577364.982 0.013 0 0 2 0
exit 2
 3 : 1376577364.990 0.013 0 0 3 0
exit 3
 4 : 1376577365.003 0.003 0 0 0 0
exit 0

The log contains the job sequence, which host the job was run on, the
 start time and run time, how
much data was transferred, the exit
 value, the signal that killed the job, and finally the command being
run.

With a joblog GNU parallel can be stopped and later pickup where it
 left off. It it important that the
input of the completed jobs is
 unchanged.

 parallel --joblog /tmp/log exit ::: 1 2 3 0
 cat /tmp/log
 parallel --resume --joblog /tmp/log exit ::: 1 2 3 0 0 0
 cat /tmp/log

Output:

 Seq Host Starttime Runtime Send Receive Exitval Signal
Command
 1 : 1376580069.544 0.008 0 0 1 0
exit 1
 2 : 1376580069.552 0.009 0 0 2 0
exit 2
 3 : 1376580069.560 0.012 0 0 3 0
exit 3
 4 : 1376580069.571 0.005 0 0 0 0
exit 0

 Seq Host Starttime Runtime Send Receive Exitval Signal
Command
 1 : 1376580069.544 0.008 0 0 1 0
exit 1
 2 : 1376580069.552 0.009 0 0 2 0
exit 2
 3 : 1376580069.560 0.012 0 0 3 0
exit 3
 4 : 1376580069.571 0.005 0 0 0 0
exit 0
 5 : 1376580070.028 0.009 0 0 0 0
exit 0
 6 : 1376580070.038 0.007 0 0 0 0
exit 0

Note how the start time of the last 2 jobs is clearly different from the second run.

With --resume-failed GNU parallel will re-run the jobs that failed:

 parallel --resume-failed --joblog /tmp/log exit ::: 1 2 3 0 0 0
 cat /tmp/log

Output:

 Seq Host Starttime Runtime Send Receive Exitval Signal

GNU Parallel Tutorial

Page 22

Command
 1 : 1376580069.544 0.008 0 0 1 0
exit 1
 2 : 1376580069.552 0.009 0 0 2 0
exit 2
 3 : 1376580069.560 0.012 0 0 3 0
exit 3
 4 : 1376580069.571 0.005 0 0 0 0
exit 0
 5 : 1376580070.028 0.009 0 0 0 0
exit 0
 6 : 1376580070.038 0.007 0 0 0 0
exit 0
 1 : 1376580154.433 0.010 0 0 1 0
exit 1
 2 : 1376580154.444 0.022 0 0 2 0
exit 2
 3 : 1376580154.466 0.005 0 0 3 0
exit 3

Note how seq 1 2 3 have been repeated because they had exit value
 different from 0.

--retry-failed does almost the same as --resume-failed. Where --resume-failed reads the
commands from the command line (and
 ignores the commands in the joblog), --retry-failed ignores
the
 command line and reruns the commands mentioned in the joblog.

 parallel --resume-failed --joblog /tmp/log
 cat /tmp/log

Output:

 Seq Host Starttime Runtime Send Receive Exitval Signal
Command
 1 : 1376580069.544 0.008 0 0 1 0
exit 1
 2 : 1376580069.552 0.009 0 0 2 0
exit 2
 3 : 1376580069.560 0.012 0 0 3 0
exit 3
 4 : 1376580069.571 0.005 0 0 0 0
exit 0
 5 : 1376580070.028 0.009 0 0 0 0
exit 0
 6 : 1376580070.038 0.007 0 0 0 0
exit 0
 1 : 1376580154.433 0.010 0 0 1 0
exit 1
 2 : 1376580154.444 0.022 0 0 2 0
exit 2
 3 : 1376580154.466 0.005 0 0 3 0
exit 3
 1 : 1376580164.633 0.010 0 0 1 0
exit 1
 2 : 1376580164.644 0.022 0 0 2 0
exit 2
 3 : 1376580164.666 0.005 0 0 3 0
exit 3

GNU Parallel Tutorial

Page 23

Termination
For certain jobs there is no need to continue if one of the jobs fails
 and has an exit code different from
0. GNU parallel will stop spawning new jobs
 with --halt soon,fail=1:

 parallel -j2 --halt soon,fail=1 echo {}\; exit {} ::: 0 0 1 2 3

Output:

 0
 0
 1
 parallel: Starting no more jobs. Waiting for 2 jobs to finish. This job
failed:
 echo 1; exit 1
 2
 parallel: Starting no more jobs. Waiting for 1 jobs to finish. This job
failed:
 echo 2; exit 2

With --halt now,fail=1 the running jobs will be killed immediately:

 parallel -j2 --halt now,fail=1 echo {}\; exit {} ::: 0 0 1 2 3

Output:

 0
 0
 1
 parallel: This job failed:
 echo 1; exit 1

If --halt is given a percentage this percentage of the jobs must fail
 before GNU parallel stops
spawning more jobs:

 parallel -j2 --halt soon,fail=20% echo {}\; exit {} ::: 0 1 2 3 4 5 6 7 8
 9

Output:

 0
 1
 parallel: This job failed:
 echo 1; exit 1
 2
 parallel: This job failed:
 echo 2; exit 2
 parallel: Starting no more jobs. Waiting for 1 jobs to finish.
 3
 parallel: This job failed:
 echo 3; exit 3

If you are looking for success instead of failures, you can use success. This will finish as soon as the
first job succeeds:

 parallel -j2 --halt now,success=1 echo {}\; exit {} ::: 1 2 3 0 4 5 6

Output:

GNU Parallel Tutorial

Page 24

 1
 2
 3
 0
 parallel: This job succeeded:
 echo 0; exit 0

GNU parallel can retry the command with --retries. This is useful if a
 command fails for unknown
reasons now and then.

 parallel -k --retries 3 'echo tried {} >>/tmp/runs; echo completed {};
exit {}' ::: 1 2 0
 cat /tmp/runs

Output:

 completed 1
 completed 2
 completed 0

 tried 1
 tried 2
 tried 1
 tried 2
 tried 1
 tried 2
 tried 0

Note how job 1 and 2 were tried 3 times, but 0 was not retried because it had exit code 0.

Termination signals (advanced)

Using --termseq you can control which signals are sent when killing
 children. Normally children will
be killed by sending them SIGTERM,
 waiting 200 ms, then another SIGTERM, waiting 100 ms, then
another SIGTERM, waiting 50 ms, then a SIGKILL, finally waiting 25 ms
 before giving up. It looks like
this:

 show_signals() {
 perl -e 'for(keys %SIG) { $SIG{$_} = eval "sub { print \"Got $_\\n\";
}";} while(1){sleep 1}'
 }
 export -f show_signals
 echo | parallel --termseq TERM,200,TERM,100,TERM,50,KILL,25 -u --timeout
1 show_signals

Output:

 Got TERM
 Got TERM
 Got TERM

Or just:

 echo | parallel -u --timeout 1 show_signals

Output: Same as above.

You can change this to SIGINT, SIGTERM, SIGKILL:

GNU Parallel Tutorial

Page 25

 echo | parallel --termseq INT,200,TERM,100,KILL,25 -u --timeout 1
show_signals

Output:

 Got INT
 Got TERM

The SIGKILL does not show because it cannot be caught, and thus the child dies.

Limiting the resources
To avoid overloading systems GNU parallel can look at the system load
 before starting another job:

 parallel --load 100% echo load is less than {} job per cpu ::: 1

Output:

 [when then load is less than the number of cpu cores]
 load is less than 1 job per cpu

GNU parallel can also check if the system is swapping.

 parallel --noswap echo the system is not swapping ::: now

Output:

 [when then system is not swapping]
 the system is not swapping now

Some jobs need a lot of memory, and should only be started when there
 is enough memory free.
Using --memfree GNU parallel can check if
 there is enough memory free. Additionally, GNU parallel
will kill
 off the youngest job if the memory free falls below 50% of the
 size. The killed job will put back
on the queue and retried later.

 parallel --memfree 1G echo will run if more than 1 GB is ::: free

GNU parallel can run the jobs with a nice value. This will work both
 locally and remotely.

 parallel --nice 17 echo this is being run with nice -n ::: 17

Output:

 this is being run with nice -n 17

Remote execution
GNU parallel can run jobs on remote servers. It uses ssh to
 communicate with the remote machines.

Sshlogin
The most basic sshlogin is -S host:

 parallel -S $SERVER1 echo running on ::: $SERVER1

Output:

 running on [$SERVER1]

GNU Parallel Tutorial

Page 26

To use a different username prepend the server with username@:

 parallel -S username@$SERVER1 echo running on ::: username@$SERVER1

Output:

 running on [username@$SERVER1]

The special sshlogin : is the local machine:

 parallel -S : echo running on ::: the_local_machine

Output:

 running on the_local_machine

If ssh is not in $PATH it can be prepended to $SERVER1:

 parallel -S '/usr/bin/ssh '$SERVER1 echo custom ::: ssh

Output:

 custom ssh

The ssh command can also be given using --ssh:

 parallel --ssh /usr/bin/ssh -S $SERVER1 echo custom ::: ssh

or by setting $PARALLEL_SSH:

 export PARALLEL_SSH=/usr/bin/ssh
 parallel -S $SERVER1 echo custom ::: ssh

Several servers can be given using multiple -S:

 parallel -S $SERVER1 -S $SERVER2 echo ::: running on more hosts

Output (the order may be different):

 running
 on
 more
 hosts

Or they can be separated by ,:

 parallel -S $SERVER1,$SERVER2 echo ::: running on more hosts

Output: Same as above.

Or newline:

 # This gives a \n between $SERVER1 and $SERVER2
 SERVERS="`echo $SERVER1; echo $SERVER2`"
 parallel -S "$SERVERS" echo ::: running on more hosts

They can also be read from a file (replace user@ with the user on $SERVER2):

GNU Parallel Tutorial

Page 27

 echo $SERVER1 > nodefile
 # Force 4 cores, special ssh-command, username
 echo 4//usr/bin/ssh user@$SERVER2 >> nodefile
 parallel --sshloginfile nodefile echo ::: running on more hosts

Output: Same as above.

Every time a job finished, the --sshloginfile will be re-read, so
 it is possible to both add and remove
hosts while running.

The special --sshloginfile .. reads from ~/.parallel/sshloginfile.

To force GNU parallel to treat a server having a given number of CPU
 cores prepend the number of
core followed by / to the sshlogin:

 parallel -S 4/$SERVER1 echo force {} cpus on server ::: 4

Output:

 force 4 cpus on server

Servers can be put into groups by prepending @groupname to the
 server and the group can then be
selected by appending @groupname to
 the argument if using --hostgroup:

 parallel --hostgroup -S @grp1/$SERVER1 -S @grp2/$SERVER2 echo {} ::: \
 run_on_grp1@grp1 run_on_grp2@grp2

Output:

 run_on_grp1
 run_on_grp2

A host can be in multiple groups by separating the groups with +, and
 you can force GNU parallel to
limit the groups on which the command
 can be run with -S @groupname:

 parallel -S @grp1 -S @grp1+grp2/$SERVER1 -S @grp2/SERVER2 echo {} ::: \
 run_on_grp1 also_grp1

Output:

 run_on_grp1
 also_grp1

Transferring files
GNU parallel can transfer the files to be processed to the remote
 host. It does that using rsync.

 echo This is input_file > input_file
 parallel -S $SERVER1 --transferfile {} cat ::: input_file

Output:

 This is input_file

If the files are processed into another file, the resulting file can be
 transferred back:

 echo This is input_file > input_file
 parallel -S $SERVER1 --transferfile {} --return {}.out cat {} ">"{}.out
::: input_file

GNU Parallel Tutorial

Page 28

 cat input_file.out

Output: Same as above.

To remove the input and output file on the remote server use --cleanup:

 echo This is input_file > input_file
 parallel -S $SERVER1 --transferfile {} --return {}.out --cleanup cat {}
">"{}.out ::: input_file
 cat input_file.out

Output: Same as above.

There is a shorthand for --transferfile {} --return --cleanup called --trc:

 echo This is input_file > input_file
 parallel -S $SERVER1 --trc {}.out cat {} ">"{}.out ::: input_file
 cat input_file.out

Output: Same as above.

Some jobs need a common database for all jobs. GNU parallel can
 transfer that using --basefile
which will transfer the file before the
 first job:

 echo common data > common_file
 parallel --basefile common_file -S $SERVER1 cat common_file\; echo {} :::
 foo

Output:

 common data
 foo

To remove it from the remote host after the last job use --cleanup.

Working dir
The default working dir on the remote machines is the login dir. This
 can be changed with --workdir
mydir.

Files transferred using --transferfile and --return will be relative
 to mydir on remote computers, and
the command will be executed in
 the dir mydir.

The special mydir value ... will create working dirs under ~/.parallel/tmp on the remote computers. If
--cleanup is given
 these dirs will be removed.

The special mydir value . uses the current working dir. If the
 current working dir is beneath your home
dir, the value . is
 treated as the relative path to your home dir. This means that if your
 home dir is
different on remote computers (e.g. if your login is
 different) the relative path will still be relative to
your home dir.

 parallel -S $SERVER1 pwd ::: ""
 parallel --workdir . -S $SERVER1 pwd ::: ""
 parallel --workdir ... -S $SERVER1 pwd ::: ""

Output:

 [the login dir on $SERVER1]
 [current dir relative on $SERVER1]
 [a dir in ~/.parallel/tmp/...]

GNU Parallel Tutorial

Page 29

Avoid overloading sshd
If many jobs are started on the same server, sshd can be
 overloaded. GNU parallel can insert a
delay between each job run on
 the same server:

 parallel -S $SERVER1 --sshdelay 0.2 echo ::: 1 2 3

Output (the order may be different):

 1
 2
 3

sshd will be less overloaded if using --controlmaster, which will
 multiplex ssh connections:

 parallel --controlmaster -S $SERVER1 echo ::: 1 2 3

Output: Same as above.

Ignore hosts that are down
In clusters with many hosts a few of them are often down. GNU parallel
 can ignore those hosts. In
this case the host 173.194.32.46 is down:

 parallel --filter-hosts -S 173.194.32.46,$SERVER1 echo ::: bar

Output:

 bar

Running the same commands on all hosts
GNU parallel can run the same command on all the hosts:

 parallel --onall -S $SERVER1,$SERVER2 echo ::: foo bar

Output (the order may be different):

 foo
 bar
 foo
 bar

Often you will just want to run a single command on all hosts with out
 arguments. --nonall is a no
argument --onall:

 parallel --nonall -S $SERVER1,$SERVER2 echo foo bar

Output:

 foo bar
 foo bar

When --tag is used with --nonall and --onall the --tagstring is the host:

 parallel --nonall --tag -S $SERVER1,$SERVER2 echo foo bar

Output (the order may be different):

 $SERVER1 foo bar

GNU Parallel Tutorial

Page 30

 $SERVER2 foo bar

--jobs sets the number of servers to log in to in parallel.

Transferring environment variables and functions
Using --env GNU parallel can transfer an environment variable to the
 remote system.

 MYVAR='foo bar'
 export MYVAR
 parallel --env MYVAR -S $SERVER1 echo '$MYVAR' ::: baz

Output:

 foo bar baz

This works for functions, too, if your shell is Bash:

 # This only works in Bash
 my_func() {
 echo in my_func $1
 }
 export -f my_func
 parallel --env my_func -S $SERVER1 my_func ::: baz

Output:

 in my_func baz

GNU parallel can copy all defined variables and functions to the
 remote system. It just needs to
record which ones to ignore in ~/.parallel/ignored_vars. Do that by running this once:

 parallel --record-env
 cat ~/.parallel/ignored_vars

Output:

 [list of variables to ignore - including $PATH and $HOME]

Now all new variables and functions defined will be copied when using --env _:

 # The function is only copied if using Bash
 my_func2() {
 echo in my_func2 $VAR $1
 }
 export -f my_func2
 VAR=foo
 export VAR

 parallel --env _ -S $SERVER1 'echo $VAR; my_func2' ::: bar

Output:

 foo
 in my_func2 foo bar

GNU Parallel Tutorial

Page 31

Showing what is actually run
--verbose will show the command that would be run on the local
 machine. When a job is run on a
remote machine, this is wrapped with ssh and possibly transferring files and environment variables,
setting
 the workdir, and setting --nice value. -vv shows all of this.

 parallel -vv -S $SERVER1 echo ::: bar

Output:

 ssh lo -- exec perl -e
\''@GNU_Parallel=("use","IPC::Open3;","use","MIME::Base64");

eval"@GNU_Parallel";my$eval;$eval=decode_base64(join"",@ARGV);eval$eval;'\'
 JEVOVnsiUEFSQUxMRUxfUElEIn09IjI3MzQiOyRFTlZ7IlBBUkFMTEVMX1NFUSJ9PSIx
 IjskYmFzaGZ1bmMgPSAiIjtAQVJHVj0iZWNobyBiYXIiOyRzaGVsbD0iJEVOVntTSEVM
 TH0iOyR0bXBkaXI9Ii90bXAiOyRuaWNlPTA7ZG97JEVOVntQQVJBTExFTF9UTVB9PSR0
 bXBkaXIuIi9wYXIiLmpvaW4iIixtYXB7KDAuLjksImEiLi4ieiIsIkEiLi4iWiIpW3Jh
 bmQoNjIpXX0oMS4uNSk7fXdoaWxlKC1lJEVOVntQQVJBTExFTF9UTVB9KTskU0lHe0NI
 TER9PXN1YnskZG9uZT0xO307JHBpZD1mb3JrO3VubGVzcygkcGlkKXtzZXRwZ3JwO2V2
 YWx7c2V0cHJpb3JpdHkoMCwwLCRuaWNlKX07ZXhlYyRzaGVsbCwiLWMiLCgkYmFzaGZ1
 bmMuIkBBUkdWIik7ZGllImV4ZWM6JCFcbiI7fWRveyRzPSRzPDE/MC4wMDErJHMqMS4w
 MzokcztzZWxlY3QodW5kZWYsdW5kZWYsdW5kZWYsJHMpO311bnRpbCgkZG9uZXx8Z2V0
 cHBpZD09MSk7a2lsbChTSUdIVVAsLSR7cGlkfSl1bmxlc3MkZG9uZTt3YWl0O2V4aXQo
 JD8mMTI3PzEyOCsoJD8mMTI3KToxKyQ/Pj44KQ==;
 bar

When the command gets more complex, the output is so hard to read, that it is only useful for
debugging:

 my_func3() {
 echo in my_func $1 > $1.out
 }
 export -f my_func3
 parallel -vv --workdir ... --nice 17 --env _ --trc {}.out -S $SERVER1
my_func3 {} ::: abc-file

Output will be similar to:

 (ssh lo -- mkdir -p ./.parallel/tmp/hk-3492-1;rsync --protocol 30
 -rlDzR -essh ./abc-file lo:./.parallel/tmp/hk-3492-1);ssh lo --
 exec perl -e \''@GNU_Parallel=("use","IPC::Open3;","use","MIME::Base64");

eval"@GNU_Parallel";my$eval;$eval=decode_base64(join"",@ARGV);eval$eval;'\'
 c3lzdGVtKCJta2RpciIsIi1wIiwiLS0iLCIucGFyYWxsZWwvdG1wL2hrLTM0OTItMSIp
 OyBjaGRpciAiLnBhcmFsbGVsL3RtcC9oay0zNDkyLTEiIHx8cHJpbnQoU1RERVJSICJw
 YXJhbGxlbDogQ2Fubm90IGNoZGlyIHRvIC5wYXJhbGxlbC90bXAvaGstMzQ5Mi0xXG4i
 KSAmJiBleGl0IDI1NTskRU5WeyJHUEdfQUdFTlRfSU5GTyJ9PSIvdG1wL2dwZy10WjVI
 U0QvUy5ncGctYWdlbnQ6MjM5NzoxIjskRU5WeyJQQVJBTExFTF9TRVEifT0iMSI7JEVO
 VnsiU1FMSVRFVEJMIn09InNxbGl0ZTM6Ly8vJTJGdG1wJTJGcGFyYWxsZWwuZGIyL3Bh
 cnNxbDIiOyRFTlZ7IlBBUkFMTEVMX1BJRCJ9PSIzNDkyIjskRU5WeyJTUUxJVEUifT0i
 c3FsaXRlMzovLy8lMkZ0bXAlMkZwYXJhbGxlbC5kYjIiOyRFTlZ7IlBBUkFMTEVMX1BJ
 RCJ9PSIzNDkyIjskRU5WeyJQQVJBTExFTF9TRVEifT0iMSI7QGJhc2hfZnVuY3Rpb25z
 PXF3KG15X2Z1bmMzKTsgaWYoJEVOVnsiU0hFTEwifT1+L2NzaC8pIHsgcHJpbnQgU1RE
 RVJSICJDU0gvVENTSCBETyBOT1QgU1VQUE9SVCBuZXdsaW5lcyBJTiBWQVJJQUJMRVMv
 RlVOQ1RJT05TLiBVbnNldCBAYmFzaF9mdW5jdGlvbnNcbiI7IGV4ZWMgImZhbHNlIjsg
 fSAKJGJhc2hmdW5jID0gIm15X2Z1bmMzKCkgeyAgZWNobyBpbiBteV9mdW5jIFwkMSA+
 IFwkMS5vdXQKfTtleHBvcnQgLWYgbXlfZnVuYzMgPi9kZXYvbnVsbDsiO0BBUkdWPSJt

GNU Parallel Tutorial

Page 32

 eV9mdW5jMyBhYmMtZmlsZSI7JHNoZWxsPSIkRU5We1NIRUxM
 fSI7JHRtcGRpcj0iL3RtcCI7JG5pY2U9MTc7ZG97JEVOVntQQVJBTExFTF9UTVB9PSR0
 bXBkaXIuIi9wYXIiLmpvaW4iIixtYXB7KDAuLjksImEiLi4ieiIsIkEiLi4iWiIpW3Jh
 bmQoNjIpXX0oMS4uNSk7fXdoaWxlKC1lJEVOVntQQVJBTExFTF9UTVB9KTskU0lHe0NI
 TER9PXN1YnskZG9uZT0xO307JHBpZD1mb3JrO3VubGVzcygkcGlkKXtzZXRwZ3JwO2V2
 YWx7c2V0cHJpb3JpdHkoMCwwLCRuaWNlKX07ZXhlYyRzaGVsbCwiLWMiLCgkYmFzaGZ1
 bmMuIkBBUkdWIik7ZGllImV4ZWM6JCFcbiI7fWRveyRzPSRzPDE/MC4wMDErJHMqMS4w
 MzokcztzZWxlY3QodW5kZWYsdW5kZWYsdW5kZWYsJHMpO311bnRpbCgkZG9uZXx8Z2V0
 cHBpZD09MSk7a2lsbChTSUdIVVAsLSR7cGlkfSl1bmxlc3MkZG9uZTt3YWl0O2V4aXQo
 JD8mMTI3PzEyOCsoJD8mMTI3KToxKyQ/Pj44KQ==;_EXIT_status=$?;
 mkdir -p ./.; rsync --protocol 30 --rsync-path=cd\
 ./.parallel/tmp/hk-3492-1/./.\;\ rsync -rlDzR -essh
 lo:./abc-file.out ./.;ssh lo -- \(rm\ -f\
 ./.parallel/tmp/hk-3492-1/abc-file\;\ sh\ -c\ \'rmdir\
 ./.parallel/tmp/hk-3492-1/\ ./.parallel/tmp/\ ./.parallel/\
 2\>/dev/null\'\;rm\ -rf\ ./.parallel/tmp/hk-3492-1\;\);ssh lo --
 \(rm\ -f\ ./.parallel/tmp/hk-3492-1/abc-file.out\;\ sh\ -c\ \'rmdir\
 ./.parallel/tmp/hk-3492-1/\ ./.parallel/tmp/\ ./.parallel/\
 2\>/dev/null\'\;rm\ -rf\ ./.parallel/tmp/hk-3492-1\;\);ssh lo -- rm
 -rf .parallel/tmp/hk-3492-1; exit $_EXIT_status;

Saving to an SQL base (advanced)
GNU parallel can save into an SQL base. Point GNU parallel to a
 table and it will put the joblog there
together with the variables and
 the outout each in their own column.

GNU parallel uses a DBURL to address the table. A DBURL has this format:

 vendor://[[user][:password]@][host][:port]/[database[/table]

Example:

 mysql://scott:tiger@my.example.com/mydatabase/mytable
 postgresql://scott:tiger@pg.example.com/mydatabase/mytable
 sqlite3:///%2Ftmp%2Fmydatabase/mytable

To refer to /tmp/mydatabase with sqlite you need to encode the / as %2F.

Run a job using sqlite on mytable in /tmp/mydatabase:

 DBURL=sqlite3:///%2Ftmp%2Fmydatabase
 DBURLTABLE=$DBURL/mytable
 parallel --sqlandworker $DBURLTABLE echo ::: foo bar ::: baz quuz

To see the result:

 sql $DBURL 'SELECT * FROM mytable ORDER BY Seq;'

Output will be similar to:

Seq|Host|Starttime|JobRuntime|Send|Receive|Exitval|_Signal|Command|V1|V2|St
dout|Stderr
 1|:|1451619638.903|0.806||8|0|0|echo foo baz|foo|baz|foo baz
 |
 2|:|1451619639.265|1.54||9|0|0|echo foo quuz|foo|quuz|foo quuz
 |
 3|:|1451619640.378|1.43||8|0|0|echo bar baz|bar|baz|bar baz

GNU Parallel Tutorial

Page 33

 |
 4|:|1451619641.473|0.958||9|0|0|echo bar quuz|bar|quuz|bar quuz
 |

The first columns are well known from --joblog. V1 and V2 are
 data from the input sources. Stdout
and Stderr are standard
 output and standard error, respectively.

Using multiple workers
Using an SQL base as storage costs a lot of performance.

One of the situations where it makes sense is if you have multiple
 workers.

You can then have a single master machine that submits jobs to the SQL
 base (but does not do any
of the work):

 parallel --sql $DBURLTABLE echo ::: foo bar ::: baz quuz

On the worker machines you run exactly the same command except you
 replace --sql with
--sqlworker.

 parallel --sqlworker $DBURLTABLE echo ::: foo bar ::: baz quuz

To run a master and a worker on the same machine use --sqlandworker
 as shown earlier.

--pipe
The --pipe functionality puts GNU parallel in a different mode:
 Instead of treating the data on stdin
(standard input) as arguments
 for a command to run, the data will be sent to stdin (standard input)
 of
the command.

The typical situation is:

 command_A | command_B | command_C

where command_B is slow, and you want to speed up command_B.

Chunk size
By default GNU parallel will start an instance of command_B, read a
 chunk of 1 MB, and pass that to
the instance. Then start another
 instance, read another chunk, and pass that to the second instance.

 cat num1000000 | parallel --pipe wc

Output (the order may be different):

 165668 165668 1048571
 149797 149797 1048579
 149796 149796 1048572
 149797 149797 1048579
 149797 149797 1048579
 149796 149796 1048572
 85349 85349 597444

The size of the chunk is not exactly 1 MB because GNU parallel only
 passes full lines - never half a
line, thus the blocksize is only
 average 1 MB. You can change the block size to 2 MB with --block:

 cat num1000000 | parallel --pipe --block 2M wc

Output (the order may be different):

GNU Parallel Tutorial

Page 34

 315465 315465 2097150
 299593 299593 2097151
 299593 299593 2097151
 85349 85349 597444

GNU parallel treats each line as a record. If the order of record is
 unimportant (e.g. you need all lines
processed, but you do not care
 which is processed first), then you can use --round-robin. Without
--round-robin GNU parallel will start a command per block; with --round-robin only the requested
number of jobs will be started
 (--jobs). The records will then be distributed between the running
 jobs:

 cat num1000000 | parallel --pipe -j4 --round-robin wc

Output will be similar to:

 149797 149797 1048579
 299593 299593 2097151
 315465 315465 2097150
 235145 235145 1646016

One of the 4 instances got a single record, 2 instances got 2 full
 records each, and one instance got 1
full and 1 partial record.

Records
GNU parallel sees the input as records. The default record is a single
 line.

Using -N140000 GNU parallel will read 140000 records at a time:

 cat num1000000 | parallel --pipe -N140000 wc

Output (the order may be different):

 140000 140000 868895
 140000 140000 980000
 140000 140000 980000
 140000 140000 980000
 140000 140000 980000
 140000 140000 980000
 140000 140000 980000
 20000 20000 140001

Notice that the last job could not get the full 140000 lines, but only
 20000 lines.

If a record is 75 lines -L can be used:

 cat num1000000 | parallel --pipe -L75 wc

Output (the order may be different):

 165600 165600 1048095
 149850 149850 1048950
 149775 149775 1048425
 149775 149775 1048425
 149850 149850 1048950
 149775 149775 1048425
 85350 85350 597450
 25 25 176

GNU Parallel Tutorial

Page 35

Notice GNU parallel still reads a block of around 1 MB; but instead of
 passing full lines to wc it
passes full 75 lines at a time. This
 of course does not hold for the last job (which in this case got 25

lines).

Record separators
GNU parallel uses separators to determine where two records split.

--recstart gives the string that starts a record; --recend gives the
 string that ends a record. The
default is --recend '\n' (newline).

If both --recend and --recstart are given, then the record will only
 split if the recend string is
immediately followed by the recstart
 string.

Here the --recend is set to ', ':

 echo /foo, bar/, /baz, qux/, | parallel -kN1 --recend ', ' --pipe echo
JOB{#}\;cat\;echo END

Output:

 JOB1
 /foo, END
 JOB2
 bar/, END
 JOB3
 /baz, END
 JOB4
 qux/,
 END

Here the --recstart is set to /:

 echo /foo, bar/, /baz, qux/, | parallel -kN1 --recstart / --pipe echo
JOB{#}\;cat\;echo END

Output:

 JOB1
 /foo, barEND
 JOB2
 /, END
 JOB3
 /baz, quxEND
 JOB4
 /,
 END

Here both --recend and --recstart are set:

 echo /foo, bar/, /baz, qux/, | parallel -kN1 --recend ', ' --recstart /
--pipe echo JOB{#}\;cat\;echo END

Output:

 JOB1
 /foo, bar/, END
 JOB2
 /baz, qux/,

GNU Parallel Tutorial

Page 36

 END

Note the difference between setting one string and setting both strings.

With --regexp the --recend and --recstart will be treated as a regular expression:

 echo foo,bar,_baz,__qux, | parallel -kN1 --regexp --recend ,_+ --pipe
echo JOB{#}\;cat\;echo END

Output:

 JOB1
 foo,bar,_END
 JOB2
 baz,__END
 JOB3
 qux,
 END

GNU parallel can remove the record separators with --remove-rec-sep/--rrs:

 echo foo,bar,_baz,__qux, | parallel -kN1 --rrs --regexp --recend ,_+
--pipe echo JOB{#}\;cat\;echo END

Output:

 JOB1
 foo,barEND
 JOB2
 bazEND
 JOB3
 qux,
 END

Header
If the input data has a header, the header can be repeated for each
 job by matching the header with
--header. If headers start with % you can do this:

 cat num_%header | parallel --header '(%.*\n)*' --pipe -N3 echo
JOB{#}\;cat

Output (the order may be different):

 JOB1
 %head1
 %head2
 1
 2
 3
 JOB2
 %head1
 %head2
 4
 5
 6
 JOB3
 %head1

GNU Parallel Tutorial

Page 37

 %head2
 7
 8
 9
 JOB4
 %head1
 %head2
 10

If the header is 2 lines, --header 2 will work:

 cat num_%header | parallel --header 2 --pipe -N3 echo JOB{#}\;cat

Output: Same as above.

--pipepart
--pipe is not very efficient. It maxes out at around 500
 MB/s. --pipepart can easily deliver 5 GB/s. But
there are a few
 limitations. The input has to be a normal file (not a pipe) given by -a or :::: and -L/-l/-N
do not work.

 parallel --pipepart -a num1000000 --block 3m wc

Output (the order may be different):

 444443 444444 3000002
 428572 428572 3000004
 126985 126984 888890

Shebang
Input data and parallel command in the same file

GNU parallel is often called as this:

 cat input_file | parallel command

With --shebang the input_file and parallel can be combined into the same script.

UNIX shell scripts start with a shebang line like this:

 #!/bin/bash

GNU parallel can do that, too. With --shebang the arguments can be
 listed in the file. The parallel
command is the first line of the
 script:

 #!/usr/bin/parallel --shebang -r echo

 foo
 bar
 baz

Output (the order may be different):

 foo
 bar
 baz

GNU Parallel Tutorial

Page 38

Parallelizing existing scripts
GNU parallel is often called as this:

 cat input_file | parallel command
 parallel command ::: foo bar

If command is a script, parallel can be combined into a single
 file so this will run the script in parallel:

 cat input_file | command
 command foo bar

This perl script perl_echo works like echo:

 #!/usr/bin/perl

 print "@ARGV\n"

It can be called as this:

 parallel perl_echo ::: foo bar

By changing the #!-line it can be run in parallel:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/perl

 print "@ARGV\n"

Thus this will work:

 perl_echo foo bar

Output (the order may be different):

 foo
 bar

This technique can be used for:

Perl:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/perl

 print "Arguments @ARGV\n";

Python:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/python

 import sys
 print 'Arguments', str(sys.argv)

Bash/sh/zsh/Korn shell:

 #!/usr/bin/parallel --shebang-wrap /bin/bash

 echo Arguments "$@"

GNU Parallel Tutorial

Page 39

csh:

 #!/usr/bin/parallel --shebang-wrap /bin/csh

 echo Arguments "$argv"

Tcl:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/tclsh

 puts "Arguments $argv"

R:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/Rscript
--vanilla --slave

 args <- commandArgs(trailingOnly = TRUE)
 print(paste("Arguments ",args))

GNUplot:

 #!/usr/bin/parallel --shebang-wrap ARG={} /usr/bin/gnuplot

 print "Arguments ", system('echo $ARG')

Ruby:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/ruby

 print "Arguments "
 puts ARGV

Octave:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/octave

 printf ("Arguments");
 arg_list = argv ();
 for i = 1:nargin
 printf (" %s", arg_list{i});
 endfor
 printf ("\n");

Common LISP:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/clisp

 (format t "~&~S~&" 'Arguments)
 (format t "~&~S~&" *args*)

PHP:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/php
 <?php
 echo "Arguments";
 foreach(array_slice($argv,1) as $v)
 {
 echo " $v";
 }

GNU Parallel Tutorial

Page 40

 echo "\n";
 ?>

Node.js:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/node

 var myArgs = process.argv.slice(2);
 console.log('Arguments ', myArgs);

LUA:

 #!/usr/bin/parallel --shebang-wrap /usr/bin/lua

 io.write "Arguments"
 for a = 1, #arg do
 io.write(" ")
 io.write(arg[a])
 end
 print("")

C#:

 #!/usr/bin/parallel --shebang-wrap ARGV={} /usr/bin/csharp

 var argv = Environment.GetEnvironmentVariable("ARGV");
 print("Arguments "+argv);

Semaphore
GNU parallel can work as a counting semaphore. This is slower and less
 efficient than its normal
mode.

A counting semaphore is like a row of toilets. People needing a toilet
 can use any toilet, but if there
are more people than toilets, they
 will have to wait for one of the toilets to be available.

An alias for parallel --semaphore is sem.

sem will follow a person to the toilets, wait until a toilet is
 available, leave the person in the toilet and
exit.

sem --fg will follow a person to the toilets, wait until a toilet is
 available, stay with the person in the
toilet and exit when the person
 exits.

sem --wait will wait for all persons to leave the toilets.

sem does not have a queue discipline, so the next person is chosen
 randomly.

-j sets the number of toilets.

Mutex
The default is to have only one toilet (this is called a mutex). The
 program is started in the background
and sem exits immediately. Use --wait to wait for all sems to finish:

 sem 'sleep 1; echo The first finished' &&
 echo The first is now running in the background &&
 sem 'sleep 1; echo The second finished' &&
 echo The second is now running in the background
 sem --wait

Output:

GNU Parallel Tutorial

Page 41

 The first is now running in the background
 The first finished
 The second is now running in the background
 The second finished

The command can be run in the foreground with --fg, which will only
 exit when the command
completes:

 sem --fg 'sleep 1; echo The first finished' &&
 echo The first finished running in the foreground &&
 sem --fg 'sleep 1; echo The second finished' &&
 echo The second finished running in the foreground
 sem --wait

The difference between this and just running the command, is that a
 mutex is set, so if other sems
were running in the background only one
 would run at a time.

To tell the difference between which semaphore is used, use --semaphorename/--id. Run this in one
terminal:

 sem --id my_id -u 'echo First started; sleep 10; echo The first finished'

and simultaneously this in another terminal:

 sem --id my_id -u 'echo Second started; sleep 10; echo The second
finished'

Note how the second will only be started when the first has finished.

Counting semaphore
A mutex is like having a single toilet: When it is in use everyone
 else will have to wait. A counting
semaphore is like having multiple
 toilets: Several people can use the toilets, but when they all are in

use, everyone else will have to wait.

sem can emulate a counting semaphore. Use --jobs to set the number of
 toilets like this:

 sem --jobs 3 --id my_id -u 'echo First started; sleep 5; echo The first
finished' &&
 sem --jobs 3 --id my_id -u 'echo Second started; sleep 6; echo The second
 finished' &&
 sem --jobs 3 --id my_id -u 'echo Third started; sleep 7; echo The third
finished' &&
 sem --jobs 3 --id my_id -u 'echo Fourth started; sleep 8; echo The fourth
 finished' &&
 sem --wait --id my_id

Output:

 First started
 Second started
 Third started
 The first finished
 Fourth started
 The second finished
 The third finished
 The fourth finished

GNU Parallel Tutorial

Page 42

Timeout
With --semaphoretimeout you can force running the command anyway after
 a period (postive
number) or give up (negative number):

 sem --id foo -u 'echo Slow started; sleep 5; echo Slow ended' &&
 sem --id foo --semaphoretimeout 1 'echo Force this running after 1 sec'
&&
 sem --id foo --semaphoretimeout -2 'echo Give up after 1 sec'
 sem --id foo --wait

Output:

 Slow started
 parallel: Warning: Semaphore timed out. Stealing the semaphore.
 Force this running after 1 sec
 Slow ended
 parallel: Warning: Semaphore timed out. Exiting.

Note how the 'Give up' was not run.

Informational
GNU parallel has some options to give short information about the
 configuration.

--help will print a summary of the most important options:

 parallel --help

Output:

 Usage:
 parallel [options] [command [arguments]] < list_of_arguments
 parallel [options] [command [arguments]] (::: arguments|::::
argfile(s))...
 cat ... | parallel --pipe [options] [command [arguments]]

 -j n Run n jobs in parallel
 -k Keep same order
 -X Multiple arguments with context replace
 --colsep regexp Split input on regexp for positional replacements
 {} {.} {/} {/.} {#} Replacement strings
 {3} {3.} {3/} {3/.} Positional replacement strings

 -S sshlogin Example: foo@server.example.com
 --slf .. Use ~/.parallel/sshloginfile as the list of sshlogins
 --trc {}.bar Shorthand for --transfer --return {}.bar --cleanup
 --onall Run the given command with argument on all sshlogins
 --nonall Run the given command with no arguments on all sshlogins

 --pipe Split stdin (standard input) to multiple jobs.
 --recend str Record end separator for --pipe.
 --recstart str Record start separator for --pipe.

 See 'man parallel' for details

 When using GNU Parallel for a publication please cite:

GNU Parallel Tutorial

Page 43

 O. Tange (2011): GNU Parallel - The Command-Line Power Tool,
 ;login: The USENIX Magazine, February 2011:42-47.

 When asking for help, always report the full output of this:

 parallel --version

Output:

 GNU parallel 20130822
 Copyright (C) 2007,2008,2009,2010,2011,2012,2013 Ole Tange and Free
Software Foundation, Inc.
 License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
 This is free software: you are free to change and redistribute it.
 GNU parallel comes with no warranty.

 Web site: http://www.gnu.org/software/parallel

 When using GNU Parallel for a publication please cite:

 O. Tange (2011): GNU Parallel - The Command-Line Power Tool,
 ;login: The USENIX Magazine, February 2011:42-47.

In scripts --minversion can be used to ensure the user has at least
 this version:

 parallel --minversion 20130722 && echo Your version is at least 20130722.

Output:

 20130722
 Your version is at least 20130722.

If using GNU parallel for research the BibTeX citation can be
 generated using --bibtex:

 parallel --bibtex

Output:

 @article{Tange2011a,
 title = {GNU Parallel - The Command-Line Power Tool},
 author = {O. Tange},
 address = {Frederiksberg, Denmark},
 journal = {;login: The USENIX Magazine},
 month = {Feb},
 number = {1},
 volume = {36},
 url = {http://www.gnu.org/s/parallel},
 year = {2011},
 pages = {42-47}
 }

With --max-line-length-allowed GNU parallel will report the maximal
 size of the command line:

 parallel --max-line-length-allowed

GNU Parallel Tutorial

Page 44

Output (may vary on different systems):

 131071

--number-of-cpus and --number-of-cores run system specific code to
 determine the number of
CPUs and CPU cores on the system. On
 unsupported platforms they will return 1:

 parallel --number-of-cpus
 parallel --number-of-cores

Output (may vary on different systems):

 4
 64

Profiles
The defaults for GNU parallel can be changed systemwide by putting the
 command line options in
/etc/parallel/config. They can be changed for
 a user by putting them in ~/.parallel/config.

Profiles work the same way, but have to be referred to with --profile:

 echo '--nice 17' > ~/.parallel/nicetimeout
 echo '--timeout 300%' >> ~/.parallel/nicetimeout
 parallel --profile nicetimeout echo ::: A B C

Output:

 A
 B
 C

Profiles can be combined:

 echo '-vv --dry-run' > ~/.parallel/dryverbose
 parallel --profile dryverbose --profile nicetimeout echo ::: A B C

Output:

 \nice -n17 /bin/bash -c echo\ A
 \nice -n17 /bin/bash -c echo\ B
 \nice -n17 /bin/bash -c echo\ C

Spread the word
I hope you have learned something from this tutorial.

If you like GNU parallel:

(Re-)walk through the tutorial if you have not done so in the past year

(http://www.gnu.org/software/parallel/parallel_tutorial.html)

Give a demo at your local user group/team/colleagues

Post the intro videos and the tutorial on Reddit, Diaspora*,
 forums, blogs, Identi.ca, Google+,
Twitter, Facebook, Linkedin,
 mailing lists

Request or write a review for your favourite blog or magazine
 (especially if you do something cool
with GNU parallel)

Invite me for your next conference

GNU Parallel Tutorial

Page 45

If you use GNU parallel for research:

Please cite GNU parallel in you publications (use --bibtex)

If GNU parallel saves you money:

(Have your company) donate to FSF or become a member
 https://my.fsf.org/donate/

(C) 2013,2014,2015,2016 Ole Tange, GPLv3

